

Discrete Choice Modelling study

Rwanda

Working paper

July 2022

Main authors:

Saulve Divin Ntivunwa

Energy 4 Impact

This material has been funded by UK aid from the UK government; however, the views expressed do not necessarily reflect the UK government's official policies.

Executive Summary

This report was commissioned by Loughborough University, the lead implementing partner on the Modern Energy Cooking Services (MECS) programme.

This report presents the findings and learnings from a discrete choice modelling (DCM) study conducted to explore the preferences of potential users in Rwanda for electric cooking products/services, through gathering data on user preferences regarding various aspects of the design and functionality of cooking devices, and existing expenditures on cooking fuels, cooking practices and the quality of electricity supply. The study uses choice models to predict the probability of choosing a cooking product based on specific characteristics or parameters.

300 interviews with households (HHs) representatives have been conducted in Kigali city and Bugesera district within a 3-week period. In addition to questions on cooking practices, the quality of electricity supplied, and expenditure on cooking fuels, survey questions asked respondents to make choices between two discrete products' options with different design parameters. Choice models were set up using choice cards, based on the key parameters identified, each of which having a limited number of levels. The respondent would choose one of the two cards presented.

The DCM key findings have been summarized into overview of the survey sample, electricity connection and supply, overview of cooking behaviours, cooking fuels consumption and cost, beliefs and perceptions, experience with technology, and discrete choice modelling results.

Overview of the survey sample

The survey sample predominantly consisted of female (77%) and youth (55%) respondents. Half of all respondents were educated to higher than secondary level. Half of the interviewed HHs were in urban areas, 33% in peri-urban whilst 17% were in rural areas. The majority of the HHs (68%) had fewer than 5 people, whilst more than 10 people per HH were only found in 1% of the interviewed HHs. The study has shown that, for either urban or rural HHs, around 85% of the main cooks were female.

Electricity connection and supply

Except for 3 HHs which were not connected to any source and 1 HH using a solar home system, all other urban and peri urban HHs were connected to the national grid. Selected rural HHs were connected to the ARC Power's solar mini grid in Bugesera district. Electric appliances ownership was highest in urban HHs, with the exception of radios and mobile phones which were comparably owned in most urban and rural HHs.

87% of grid connected HHs reported 2 or fewer power outages a month, lasting less than 30 minutes each in 90% of the cases. Higher power outage occurrences have been reported on the solar mini grid, going up to 5 times a month (43% HHs) and each time lasting more than 30 minutes.

Overview of cooking behaviours

Charcoal was the most popular main fuel, used in 46% of HHs, followed by LPG (39%), then firewood (13%). Furthermore, when considering settlements locations, LPG was the mostly used main fuel in urban HHs (75% of the LPG-using HHs) and rarely used in rural HHs (3% of the LPG-users). Charcoal was the popular main fuel in peri urban HHs, whilst firewood dominated in rural HHs (80%) and rarely existent as a main fuel, in urban HHs. eCooking, however, was hardly used as a main fuel at 1% in all HHs. Nevertheless, when considering supplementary usage, it was reported as being used in 22% of HHs, practically all urban HHs. More than half of the HHs that used eCooking used it for only few selected dishes. It was used regularly in very few HHs.

Most of urban HHs (90%) cooked 3 meals a day, whilst rural HHs generally prepared 2 meals per day. Nevertheless, approx. 30% of rural HHs also prepare 3 meals a day.

Cooking fuels consumption and cost

The main cooking fuels (LPG, charcoal, and firewood) seem to be purchased monthly. 78% of LPG-users and 58% of charcoal users purchase them once a month, whilst 78% of firewood users purchase it twice a month. Home-delivery services for cooking fuel has taken off, with 90% of LPG-users and 58% of charcoal users getting them delivered at their homes. Firewood lags behind as only 17% users get it home delivered. Considering HHs where they are used as main fuels, the HHs' mean LPG monthly cost was found at USD18.3, that of charcoal at USD11.4, whilst firewood was at USD10.

Beliefs and perceptions

Experience from users indicates that each main fuel was found expensive by its users. On the other hand, non-users' opinions on cooking fuels indicates that charcoal was found expensive by majority of its non-users (67%), whilst only 27% of LPG and 20% of firewood non-users found them expensive. Encouragingly enough, less than half (40%) of eCooking non-users found it expensive.

The survey indicates there is awareness around respiratory health problems associated with cooking fuels' smokes as 62% of the respondents, including the majority of firewood (70%) and charcoal users (66%) reported smoke from cooking fuels as a big problem for their family.

73% of the respondents believed that many people would switch to modern fuels (LPG or electricity) if their cooking cost was the same as the current expenditure on charcoal or firewood. This, coupled to the fact that electricity was reported convenient to cook with by 52% of its non-users, might favour the adoption of eCooking should the promotional campaign take off. Although most users of each fuel reported it convenient to cook with, only 15% of firewood non-users qualified it as convenient, whilst half reported both LPG and charcoal convenient to cook with.

Experience with technology

A contrast in ownership (45%) and often watching (15%) television observed in rural HHs can be explained by the intended reduction in electricity bill. Internet access was observed in urban HHs (80%), whilst only for 10% of rural HHs, which can partly be explained by its low penetration in rural areas. This impacts on different levels including access to financial services. For instance, only 30% of the rural respondents had ever used a mobile banking application, in contrast with 85% of urban respondents. Nevertheless, other non-internet-required form of financial services such as mobile money was almost universal (90%) even in rural area.

Discrete choice modelling results

People seemed to prefer low-cost cooking appliances, pots which provides them the possibility to use the lid or not whenever they see fit, showed preference to appliances with multiple hobs (the more hobs the better), preferred appliances that can both boil and fry, and appliance that cook fast. They also stressed the importance of avoiding appliances that emit smoke like the ones from wood fire, the ability to move the cooking appliance in and out of the kitchen, the capacity to cook for many people, ability to last long, and they expressed that they are happier supplementing their appliance with another stove. Additionally, people preferred weather-independent appliances, easy to clean, ability to pay half upfront

with the rest paid in instalments and would like to be having a TV as an addition to the cooking appliances.

Further analysis showed that respondents' gender, households' size, and technology proficiency did not have any effect on the choice of appliance's characteristics. Type of settlement and type of main cooking fuel, however, were found to have an influence on the preference choice of appliance's cost, number of hobs, wood-like smoke emissions, its portability, use of supplementary appliance, capacity in terms of number of people it cooks for, its availability in terms of weather dependence, and its ease of cleaning. In addition to these above-mentioned choice preferences, the domestic status had influence on appliance's financing mechanisms. The respondents' age, on the other hand, seemed to influence the choice of appliance's cost, number of hobs, wood-like smoke emissions, use of supplementary appliance, capacity in terms of number of people it cooks for, its availability in terms of weather dependence, and its ease of cleaning.

Table of Contents

Exec	utive Summary	i	i	
List	of figures	١	/iii	
List	of tables	i	x	
1.	Introduction	1	L	
	Background of th	he study		 1
	The cooking land	dscape in Rwand	a	 1
	eCooking in Rwa	nda		 2
	Aims of the stud	у		 3
Met	hodology	3	3	
	Study set up			 3
	Study area			 3
	Study structure.			 5
	Study stages			 8
Ana	ysis	8	3	
	Overview of resp	oondents' chara	cteristics	 8
	1.1.1. Personal	characteristics .		 8
	1.1.2. Househo	lds' characterist	ics	 9
	Characteristics o	of households' el	ectricity supply	 12
	1.1.3. Sources of	of electricity for	households	 12
	1.1.4. Electric a	ppliances owne	d by households	 13
	1.1.5. Power ou	utage characteri	stics	 13
	Characteristics o	of households' co	ooking behaviour	 14
	1.1.6. Cooking	fuel preference.		 14

	1.1.7. Meals' preparation	
	1.1.8. Cooking fuel consumption	on and cost18
	Beliefs and attitudes	
	1.1.9. Perceptions around coo	oking fuels25
	1.1.10. Experience with techno	logy29
	1.1.11. Households' decision m	aking31
	Discrete choice modelling resu	lts
	1.1.12. Cooking processes	
	1.1.13. Stove features	
	1.1.14. Additional functionalitie	es
	1.1.15. Disaggregating respond	ents into groups
4. C	onclusion	50
5.	References	51

List of figures

Figure 1: DCM study clusters' location within Rwanda	4
Figure 2: Example of a choice card used during the DCM survey in Rwanda	7
Figure 3: Gender distribution of respondents	8
Figure 4: Age distribution of the respondents	9
Figure 5: Respondents' level of education	9
Figure 6: Households' location	10
Figure 7: Number of people living in households	10
Figure 8: Overview of households' main cooks	11
Figure 9: Gender proportions of the main cooks from the households' members	11
Figure 10: Sources of households' drinking water	12
Figure 11: Households' sources of electricity per urbanization type	13
Figure 12: Some of the electric appliances owned by the interviewed households	13
Figure 13: Average frequency of power outages Figure 14: Average duration of power outages	14
Figure 15: Main cooking fuel of households	15
Figure 16: Cooking fuels usage within households	15
Figure 17: Frequency of eCooking usage	16
Figure 18: Frequency of cooking lunch	16
Figure 19: Frequency of cooking breakfast	17
Figure 20: Time spent on cooking in a day by households	17
Figure 21: Different LPG cylinder sizes used by interviewed households	18
Figure 22: Access to LPG home-delivery service	18
Figure 23: LPG delivery frequency per cylinder size	19
Figure 24: LPG monthly refilling frequencies	19
Figure 25: Histogram of the LPG cost per month for interviewed households	20
Figure 26: Charcoal monthly purchasing frequencies	20
Figure 27: Access to charcoal home-delivering services	21
Figure 28: Histogram of charcoal monthly cost for interviewed households	21
Figure 29: Firewood monthly purchasing frequencies	22
Figure 30: Access to firewood home-delivery services	22
Figure 31: Histogram of firewood monthly cost for interviewed households	23
Figure 32: Overall cooking fuel cost per month	24
Figure 33: Perception of main cooking fuels 'cost by their respective users	25

Figure 34: Perception of main cooking fuels' cost by their non-users	26
Figure 35: Is smoke from cooking fuels a health problem to your family?	27
Figure 36: Perceptions around cooking conveniency of different main fuels by their respective users	28
Figure 37:Perceptions around cooking conveniency of different main fuels by their non-users	28
Figure 38: Respondents' opinions on cooking fuel switch probability depending on their prices	29
Figure 39: Frequencies of following television and radio based on households' location	30
Figure 40: Mobile banking usage per households' location	30
Figure 41: Frequency of internet usage per households' location	31
Figure 42: Households' decision making	31

List of tables

Table 1: Discrete Choice Modelling study location	4
Table 2: Parameters and levels used in choice models	5
Table 3: Quantifying unit cost of energy for various fuel types used in Kigali	24
Table 4: Cooking processes variables and their corresponding options	32
Table 5: Binary logistic regression output: cooking processes	33
Table 6: Willingness to pay for preferred parameters - cooking processes	34
Table 7: Stove features and their corresponding options	35
Table 8: Binary logistic regression output: stove features	36
Table 9: Willingness to pay for preferred parameters - stove features	37
Table 10: Additional functionalities and their corresponding options	37
Table 11: Binary logistic regression output: additional functionalities	38
Table 12: Willingness to pay for preferred parameters - Additional functionalities	39
Table 13: Effect of gender on preferred appliance's characteristics	40
Table 14: Effect of settlement type on preferred appliance's characteristics	41
Table 15: Effect of type of household's main cooking fuel on preferred appliance's characteristics	43
Table 16: Effect of household's size on preferred appliance's characteristics	44
Table 17: Effect of respondent's age on preferred appliance's characteristics	46
Table 18: Effect of domestic status on preferred appliance's characteristics	47
Table 19: Effect of technology proficiency on preferred appliance's characteristics	49

1. Introduction

Background of the study

Energy 4 Impact (E4I) was contracted through Loughborough University, the lead implementing partner for the five-year Modern Energy Cooking Services (MECS) programme, to be the in-country partner for Rwanda. The programme aims to accelerate the global transition from traditional biomass-based cooking to modern-energy cooking solutions. The discrete choice modelling study is one of the research pieces E4I will do in Rwanda to understand consumer environments and to gather new insights into consumers' wishes and cultural cooking practices in Rwandan HHs.

The DCM study serves as a market research quantitative tool that provides a more realistic picture of customer preference in cooking technologies to better inform design, pricing, and marketing of eCooking appliances. It enables product or service providers to predict the probability that a target market or customers will choose a product or service based on specific characteristics or parameters, defined in this study as, cooking processes (e.g., speed of cooking), stove design (e.g., smoke emissions), and functionality (e.g., lights, mobile phone charging, TV, ability to clean, financing plans).

This DCM report is based on primary data collected by E4I in April 2022. E4I carried out interviews with 300 respondents across six different clusters within Kigali city and Bugesera district. This report analyses empirical evidence on preferences of cooking appliances' characteristics, electricity use, cooking energy (quantity and choices), cooking perceptions, as well as respondents' feedback on the experience with technology and intra-household decision making.

The cooking landscape in Rwanda

In Rwanda, there is still a huge reliance on traditional fuels for cooking. In rural areas, firewood accounts for 93% of the fuel used for cooking. Even in urban areas, firewood represents 26.3% of cooking fuel, with charcoal being the most common (65% of the total cooking fuel used). With firewood and charcoal as the prevalent cooking fuels, the use of traditional cooking technologies is also common in Rwanda. Traditional stoves are the most commonly used (53%) by HHs, followed by charcoal or open fire stoves (with 16%) (NISR, 2018).

As a result, access to clean cooking acts as a significant bottleneck when it comes to improving the health and well-being of Rwandan HHs. The Government of Rwanda (GoR), through its Rwanda Energy

Policy, recognises both the environmental and health threats presented by the overexploitation of biomass – in particular, firewood and charcoal. HH air pollution (HAP) from solid fuel use is the fourth-leading risk factor for morbidity and mortality in Rwanda, and respiratory infection is the leading cause of loss of life (IHME, 2021). It is estimated that annually, more than 7,383 premature deaths in Rwanda are attributable to HAP, with total welfare losses of U\$ 674 million per year (World Bank and IHME, 2016). On average, 76% of HHs spend at least seven hours per week acquiring fuel, either by collecting or purchasing it and preparing the fuel for their stoves, with a disproportionate burden on HHs using firewood (World Bank, 2020). Women and girls also disproportionately bear the burden of fuel collection and cooking-related activities. As a result, women and children are more susceptible to HAP and associated adverse health effects, and chores relating to cooking take a considerable amount of their time, which otherwise could be used for other productive activities such as education or employment (World Bank, 2020).

eCooking in Rwanda

According to the Rwandan Government's Biomass Energy Strategy, electricity is an alternative source of energy for cooking, particularly for the hospitality sector and high-income segments of the population. Progress in electricity generation and electricity access in recent years has meant that Rwanda experiences significant surpluses of energy during off-peak hours, while power supply and demand become more closely matched in peak evening hours. This, in addition to the challenge of low electricity demand across the country, indicates that using electricity for cooking through "smart" electricity tariffs around meal hours might help to absorb the excess baseload electricity in the daytime, and help reduce the dependence on biomass at the same time. The inclusion of eCooking appliances within the recent clean cooking results-based-finance window by the Development Bank of Rwanda (BRD) (BRD, 2021a) has been seen as a positive development.

All around Kigali city, there are several shops selling eCooking appliances. However, there is a lack of after-sales service and little awareness of their benefits, which has hampered their adoption. Encouragingly, there is growing interest from private companies such as Electrocook and BURN Manufacturing in selling and, in the long term, manufacturing EPCs in Rwanda, which would reduce considerably most of the barriers to adoption of eCooking.

Aims of the study

The aim of this study is to explore the preferences of potential users in Rwanda for electric cooking products/services.

In particular, the specific objective is to gather data on:

- User preferences regarding various aspects of the design and functionality of cooking devices.
- Existing expenditures on cooking fuels, cooking practices and the quality of electricity supply.

Methodology

Study set up

To ensure that data was captured as accurately as possible and the smooth implementation of the study, the recruited enumerators had good knowledge of the neighbourhood and HH characteristics, as they were coming from the assigned clusters. Specifically, enumerators had the following characteristics:

- University graduates or in the university
- Familiar with the HHs in their locality
- Committed to be available the whole period of the study
- Computer literate and familiar with common languages spoken in Rwanda such as English, Kinyarwanda and French
- Familiar with the cooking processes of most common Rwandan dishes

Enumerators received a 2-day training on the study overview, objectives, and methodology particularly on choice cards method designed to make a discrete option between 2 distinct choices. The training also included data recording using Kobo toolbox. The KoboCollect digital survey tool was used to collect and record data. However, choice cards were printed out on paper to allow for a better graphics' visualization.

Study area

The study was carried out in 6 sectors from 4 districts located in 2 provinces (Table 1). These sectors were chosen to capture urban, peri-urban, and rural character of households (Figure 1).

Table 1: Discrete Choice Modelling	study	location
------------------------------------	-------	----------

Province	District	Sector	Urbanization	# of households
			class	
Kigali city	Kicukiro	Kanombe	Peri-urban	50
		Gahanga		50
		Gikondo	Urban	50
	Nyarugenge	Nyamirambo		50
	Gasabo	Kimironko		50
Eastern province	Bugesera	Mayange	Rural	50

Figure 1: DCM study clusters' location within Rwanda

Study structure

The DCM methodology adopted in MECS programme countries investigates consumer cooking preferences using three main parameters:

- Cooking processes: cooking capability (boiling, frying), speed (power), use of lid, number of hobs
- Stove: capacity (number of people), smoke emissions, portability and looks
- Additional functionality: lights, mobile phone charging, TV, financing options, ability to clean.

This, paired with information on cooking practices, provided some useful insights into key parameters to consider when designing eCooking appliances.

The discrete choice experiments enable understanding of user priorities pertaining to selected products and with which the consumer need not be so familiar. Survey questions asked respondents to make choices between two discrete options (hypothetical technical solutions, or products) with different design parameters. The respondent chose one of the two cards presented. Discrete choice models predict the probability that an individual will choose an option, based on the levels of each parameter given in the option. Essentially it asked, "Would you like product A with these types of characteristics or would you like product B which has a different set of characteristics?". Choice models were set up using choice cards, based on the key parameters identified, each of which has a limited number of levels, as the Table 2 below indicates.

Parameters	# of levels	Level 1	Level 2	Level 3	Level 4
Cooking processes					
Type of cooking	2	boil only	boil & fry		
Power (speed of cooking)	3	slow	normal	fast	
Use of lid	3	no lid	pot with lid	sealed pot	
Number of hobs	3	single hob	2 hobs	4 hobs	
Stove					
Capacity (people)	3	cooks for 4 people	cooks for 7 people	cooks for 10 people	
Capacity (devices)	3	always need to use with another stove	sometimes need to use with another stove	you can do all your cooking on it	
smoke emissions	3	No smoke	gives same smoke as charcoal stove	gives same smoke as firewood stove	

$I U D E Z \cdot F U I U H E E E S U H U E VE S U SEU H I U H U E E H U U E S$	Table 2: Parameters	and levels	used in	choice	models
--	---------------------	------------	---------	--------	--------

Parameters	# of levels	Level 1	Level 2	Level 3	Level 4
Portability	2	cannot be moved (too heavy)	can be carried in/out of the house		
Durability	2	3 years	5 years		
Functionality					
Devices	4	2 hobs	2 hobs + 3 LED lights	3 hobs + charge mobile phone	4 hobs + television
Availability	2	only works on sunny days	works on sunny and rainy days		
Financing	3	pay as you go (monthly)	half upfront and the rest in instalments	pay cash in totality	
Cleaning	2	awkward to clean	easy to clean		

There would be 54 possible combinations of design parameters for the cooking processes, 108 for the stove features, and 48 for the additional functionality's experiment. Since these choices would be too much for the respondent, fractional orthogonal design using SPSS (Scott, Batchelor, & Jones, 2019) was used to reduce the number of choices to 16 choice cards per design domain. Orthogonal design ensures that all possible combinations are adequately covered, and that the stats package can unpack the responses down to the values assigned to the individual parameters (Scott, Batchelor, & Jones, 2019). A constant comparator approach (De Bekker-Grob, M., & K., 2012) was used, in which one of the 16 choice cards was used as a reference, and the 15 resulting pairs presented respondents with a choice between this comparator and each of the other choice cards (Example of the card in Figure 2). The respondent had to choose one of the two cards presented. The constant comparator card was selected on the basis that the mix of levels represented a mid-level of attractiveness, so one would expect the number of times the comparator was chosen and rejected to be roughly balanced. Furthermore, we divided the 15 choice pairs into two for 2 sets of respondents who answered half the questions each (Questionnaire A and Questionnaire B) and then later we analysed as a whole.

Parameter	Choice A	Choice B
Monthly cost	Rwf 20,000/month	Rwf 10,000/month
Number of people	10 people	4 people
Need to use another stove	need another stove to cook	can be cooked on alone
Smoke people breathe	smoke like charcoal	smoke like charcoal
Weight of the stove	portable	portable
Stove duration	3 years	5 years

Figure 2: Example of a choice card used during the DCM survey in Rwanda

The analysis used binary logistic regression to fit predictive models to the data as each dependent variable was a dichotomous categorical variable. All the parameters were entered into the model, which calculated regression coefficients for each, along with p values indicating whether the parameter was significant in the model.

HHs were later disaggregated into 7 different groups (variables), including gender, type of settlement, type of main cooking fuel, HHs' size, age of the respondent, domestic status, and technological proficiency. A domestic status index has been calculated from 4 variables including the type of floor construction of the HH, the HH's main source of drinking water, TV and refrigerator ownership. The technological proficiency index, on the other hand, was calculated from 4 variables including the type of phone owned, how often it is used, how often the internet is used, and the use of mobile money. The Chi-Square Test of Independence was used to determine whether there is a relationship between these groups/variables and the selected preferred appliances' characteristics (whether the variables are independent or related). Both the modelling and the Chi-square test were done using SPSS. As highlighted in the second objective, the study also gathered valuable data on cooking practices (e.g., the mix of fuels used and the timing of meals), the quality of electricity supplied, and data on

expenditure on cooking fuels. The latter is especially useful as it represents disposable income that can be substituted by modern energy cooking services.

Study stages

The DCM study was carried out in three main stages:

- A pre-survey stage to set up tools needed for the data capture and analysis, recruit, and train enumerators, identify suitable locations to carry out the survey, and develop a sampling methodology. This stage lasted for 2 weeks.
- A survey stage when the DCM study was carried out and lasted for 3 weeks. 300 respondents were interviewed.
- An analysis and reporting stage estimated at 6 weeks, whereby data analysis is conducted, and findings shared through a final report for publication.

Analysis

Overview of respondents' characteristics

1.1.1. Personal characteristics

The survey sample consisted of 300 interviews and respondents were predominantly female, 77%, compared to male (23%) (Figure 3). HHs were randomly selected with some system to it. In fact, enumerators would make sure to put a 5-HH interval between 2 consecutive HHs, where possible, to ensure a high degree of representativeness and provide a sample's even distribution. The target interviewee was the HH's head, if not present, any other adult or a group of HH's members.

Figure 3: Gender distribution of respondents

The sample was also dominated by the youth, 55.5% (Figure 4), and half the respondents (49%) were found to be educated on higher than secondary level (Figure 5). Normally, when there is a well-educated

person in a HH, he/she is the one confident enough to respond to questions. In addition, some HHs with only less-educated members shyly prefer not to be interviewed, leaving the sample dominated by welleducated respondents.

Figure 4: Age distribution of the respondents

Figure 5: Respondents' level of education

1.1.2. Households' characteristics

The majority of the HHs (68%) houses less than 5 people per each, whilst more than 10 people per HH are only found in 1% of the interviewed HHs (Figure 7).

Figure 6: Households' location

Figure 7: Number of people living in households

Figure 8 indicates that urban HHs are more likely to employ house cooks (54% of cases) as opposed to rural HHs which most often (84%) relied to HHs' members for cooking. In fact, Rwandan HHs, mostly urban, employ house cookers, thus the observed high cases of house cooks are in line with the typical situation in Kigali city, in general, and actually that percentage may in reality be much higher if we only consider neighbourhoods we sampled our respondents from. When considering only the HHs' members part, Figure 9 shows that around 85% of the cooks are female for either urban or rural HHs.

Figure 8: Overview of households' main cooks

Figure 9: Gender proportions of the main cooks from the households' members

The survey showed that urban HHs drink mainly bottled water (90%). Public standpipe dominates as a source of drinking water for peri urban HHs at 52%, followed by bottled water at 28% and utility water piped into the yard at 19%. Rural HHs mostly drink water from public standpipe (92%), although a small number uses bottled water and rainwater at 4% each (Figure 10).

Figure 10: Sources of households' drinking water

Characteristics of households' electricity supply

1.1.3. Sources of electricity for households

Almost all HHs in urban (99%) and peri-urban (97%) areas are connected to the national grid, except for 3 HHs which aren't connected to any other source and 1 HH which uses solar lantern. Rural HHs were selected from the zone of intervention of ARC Power Ltd, thus all connected to solar mini grid (Figure 11).

Figure 11: Households' sources of electricity per urbanization type

1.1.4. Electric appliances owned by households

Figure 12 shows that mobile phones and radio are owned by almost all HHs in urban, peri-urban, and rural areas, although a slight advantage radio ownership for rural HHs can be seen. A significant decrease in television posts ownership can be noted from urban (97%), peri-urban (83%), to rural HHs (46%). Other electric appliances such as refrigerator and iron were not found in any rural HHs, and in limited occurrences even in peri-urban, whilst they were found at around 63% in urban HHs.

Figure 12: Some of the electric appliances owned by the interviewed households

1.1.5. Power outage characteristics

Power outages occurrence, analyzed on a monthly basis, were reported by around 70% of grid connected HHs and 90% of solar mini grid connected HHs. Figure 13 shows that the grid connected, both urban and peri urban HHs, reported power outage occurrence of once a month in around 60% HHs and twice a month in 27% of HHs. The rural HHs connected to the solar mini grid reported higher power outages frequencies, 3 to 5 times a month reported by 43% HHs, and 20% HHs reported frequencies of more than 5 times a month. Again, with similar trends, Figure 13 shows that power outages usually last less than 30 minutes in 90% of times, for the grid connected HHs, whereas around that same figure, 90%, of solar mini grid connected HHs reported a power outage duration of more than 30 minutes.

Figure 13: Average frequency of power outages outages

Characteristics of households' cooking behaviour

1.1.6. Cooking fuel preference

Charcoal was reported as the most popular main fuel (46% of HHs), followed by LPG (39% of HHs), then firewood (13%), whilst electricity was the main fuel in only 1% of HHs. When considering HHs' locations, Figure 15 shows that LPG was the most popular main fuel in urban HHs (75% of the LPG-using HHs), rarely used in rural HHs (3% of the LPG-users), whilst charcoal was the popular main fuel in peri urban HHs. Firewood, as it's often the case, dominated in rural HHs (80%), whilst non-existing, as a main fuel, in urban HHs.

Figure 15: Main cooking fuel of households

When considering any use (not only as a main fuel), eCooking was reported used in 19% of HHs (Error! R eference source not found.) from 1% HHs as a main fuel. The majority found in urban HHs and more than half of the HHs that use eCooking used it for cooking only certain dishes (Figure 17). Only 7 HHs used eCooking regularly. Back to Figure 16, we can see that charcoal is the most stacked fuel, used in overall in 76% HHs from 46% HHs using it as a main fuel. LPG follows, used in 56% HHs from 39% as a main fuel, whilst firewood is used in 21% HHs from 13% as a main fuel.

Figure 16: Cooking fuels usage within households

Figure 17: Frequency of eCooking usage

1.1.7. Meals' preparation

All respondents reported that they prepare dinner every day, and Figure 18 indicates that the majority (above 90%) prepare lunch every day whether they are urban, peri urban, or rural HHs.

Figure 18: Frequency of cooking lunch

However, when it comes to breakfast, the pattern changes. Breakfast was cooked every day in 87% of urban HHs and 72% of peri urban HHs, whilst in rural HHs they were only 34% (Figure 19). In fact, 22% of rural HHs reported to never cook breakfast, whilst they were 12% in peri urban and 4% in urban HHs.

Figure 19: Frequency of cooking breakfast

Rural HHs spend relatively less time on cooking compared to urban and peri urban HHs (Figure 20). Although small, in addition to the lower number of meals prepared per day, this difference can be explained by the fact that often times urban and peri urban HHs employ house workers (Figure 8) whose primary role is cooking, whereas rural HHs don't benefit that privilege due to limited income. In fact, rural adult female (mostly mothers), despite being involved in daily income-generating activities, they are also responsible for all HH's chores including cooking. To accommodate all those tasks, time spent for each, cooking included, is reduced.

Figure 20: Time spent on cooking in a day by households

1.1.8. Cooking fuel consumption and cost

A. LPG

The survey indicates that various LPG cylinder sizes are in use with the 12-kg cylinder being the popular one, used in 67% of LPG-users, followed by 6-kg cylinder, 20%. The heavy weight cylinder (20 kg) seems less preferred as it was found in only 3% of HHs (Figure 21). Access to LPG seems not to be an issue as around 90% of users get it delivered to their homes, Figure 22, and as shown by Figure 23, it seems all size of cylinders, in use, are delivered on higher than 85% frequency. Furthermore, it seems even more convenient for LPG users as the refilling frequency is relatively low. In fact, LPG-users mostly (78%) refill once a month, and 11% refill twice in 3 months. Only 7% of users refill twice a month (Figure 24). The HHs' mean LPG monthly cost was found to be USD18.3, with 40% of LPG-users spending between USD17 and USD21 a month (Figure 25).

Figure 21: Different LPG cylinder sizes used by interviewed households

Figure 22: Access to LPG home-delivery service

Figure 23: LPG delivery frequency per cylinder size

Figure 24: LPG monthly refilling frequencies

N	174.0
Mean	18.3
Median	18.1
Mode	17.6
St. Dev.	6.7
25th Percentile	14.5
75th Percentile	21.6

Figure 25: Histogram of the LPG cost per month for interviewed households

B. Charcoal

Purchasing charcoal, which could either be in a large sack (roughly 35 Kg), a bucket (roughly 1 Kg), or just by weighing precise amount of Kgs, seems to be, in most cases (58%), once a month, whilst only 20% of users purchase it twice a month (Figure 26), which makes it convenient in terms of time saving. In addition, the rise of marketing strategy such as home-delivery services for charcoal (58% of users), occurring in urban and peri urban areas and mostly when purchasing large sacks, makes its use more convenient (Figure 27). The mean charcoal monthly cost was found at USD11.4, with 30% of charcoalusers spending between USD12 and USD15 a month (Figure 28).

Figure 26: Charcoal monthly purchasing frequencies

Figure 27: Access to charcoal home-delivering services

Ν	225.0
Mean	11.4
Median	11.4
Mode	11.4
St. Dev.	5.0
25th Percentile	8.7
75th Percentile	12.7

Figure 28: Histogram of charcoal monthly cost for interviewed households

C. Firewood

The survey suggests that firewood is commonly (74%) purchased twice a month, and once a month in some cases (22%) (Figure 29). Although this would not mean cause for concern, when additional inconveniences such as health problem associated with wood fire smokes discussed in Perceptions around cooking fuels chapter below, pile on its weak marketing strategy in terms of home-delivery services (Figure 30), firewood lose attractiveness. The mean firewood monthly cost was found to be the lowest at USD10, with 70% of wood-users spending between USD6 and USD15 a month (Figure 31).

Figure 29: Firewood monthly purchasing frequencies

Figure 30: Access to firewood home-delivery services

Figure 31: Histogram of firewood monthly cost for interviewed households

D. Overall cooking fuel cost

The mean cooking fuel monthly cost was found at USD22, with 65% of HHs spending between USD11 and USD27 a month (Figure 32). Again, this mean monthly fuel cost, higher than any single fuel's mean, suggests that fuel stacking is commonly practiced.

Ν	290
Mean	22
Median	22
Mode	22
St. Dev.	11
25th Percentile	13
75th Percentile	27

Figure 32: Overall cooking fuel cost per month

Table 3 suggests that at energy unit level, modern fuels are more expensive (electricity at USD0.062, followed by LPG at USD0.034) compared to biomass cooking fuel (charcoal at USD0.014 and wood the least expensive at USD0.011). Nevertheless, it is important to note that the Cooking Diary study (Ntivunwa, 2022) conducted in Kigali showed that charcoal required 8 times electricity's energy and double that of LPG to cook a meal of one person. In fact, the energy cost required to cook a meal per person were estimated at USD0.048 for electricity, USD0.069 for charcoal, and USD0.074 for LPG.

Fuel	Calorific value (MJ/Kg) or (MJ/Kw)	Standard cost in Kigali (USD)	Corresponding standard quantities (Kg)	Unit cost (USD/Kg) or (USD/Kw)	Energy unit cost (USD/MJ)
Wood	15.5	1.176	7	0.168	0.011
Charcoal	29	0.392	1	0.392	0.014
LPG	46.1	18.627	12	1.552	0.034
Electricity	3.6	0.225	1	0.225	0.062

Table 3: Quantifying unit cost of energy for various fuel types used in Kigali

Beliefs and attitudes

1.1.9. Perceptions around cooking fuels

Figure 33 and Figure 34 highlight experience and opinions, respectively, on the perspective of cooking fuels' cost. In fact, experience, here, means cost's perceptions views from users on their main cooking fuel, whilst opinions mean cost's perceptions views from non-users. Experience says that each main fuel was found expensive by its users (Figure 33). On the other hand, charcoal is found expensive by majority of its non-users (67%), whilst only 27% of LPG and 20% of firewood non-users found them expensive. Encouragingly enough, less than half (40%) of eCooking non-users found it expensive (Figure 34). Note that electricity users were too few for this experience analysis.

Figure 33: Perception of main cooking fuels 'cost by their respective users

Figure 34: Perception of main cooking fuels' cost by their non-users

Interesting to note is that the majority of firewood (70%) and charcoal users (66%), and around half of LPG users (55%) reported smoke from cooking fuels as a big health problem for their family (Figure 35), which suggests there is already an awareness around the established fact of respiratory health hazards associated with smoke from cooking fuels.

Figure 35: Is smoke from cooking fuels a health problem to your family?

Conveniency's perceptions from users on their main cooking fuel (experience) highlighted by Figure 36 indicates that most users of each fuel found it convenient to cook on, with almost all LPG users (98%) and even 60% of firewood users. When looking at the opinions of fuels non-users, however, only 15% qualified firewood as convenient to cook on, whilst half found both LPG and charcoal convenient. Noteworthy, is the fact that 52% of eCooking non-users qualified it as convenient for cooking (Figure 37).

Figure 37:Perceptions around cooking conveniency of different main fuels by their non-users

In fact, 73% of the respondents believed that many people would switch to modern fuels (LPG or electricity) if their cooking cost was the same as the current expenditure on charcoal or firewood (Figure 38).

Figure 38: Respondents' opinions on cooking fuel switch probability depending on their prices

1.1.10. Experience with technology

Most respondents, 73%, reported watching television often, whilst 61% reported listening often to the radio (Figure 39). Breaking down these proportions based on the respondents' location, it seems only 15% of rural HHs often watch television, whilst it is 82% for urban HHs. The trend changes when it comes to listening to the radio with 78% of rural HHs often listening to it whilst the number becomes 57% for urban HHS. This trend is in line with the HHs' ownership character discussed in sub-chapter 1.1.4 above, with urban HHs characterized by high TV ownership compared to rural ones, whilst rural HHs' radio ownership is higher than that of urban HHs.

Figure 39: Frequencies of following television and radio based on households' location

Almost all respondents (98%) reported using mobile money as a form of financial transaction service. This access to financial service goes further with around 60% of the respondents have at least once used a mobile banking application. However, when considering HHs' location, it is found that only a quarter of rural HHs ever used a mobile banking application (Figure 40). This can partly be explained by the low internet penetration in rural areas, in line with findings that only around 10% of rural HHs often use internet in contrast to 80% of urban HHS, as highlighted by Figure 41.

Figure 40: Mobile banking usage per households' location

Figure 41: Frequency of internet usage per households' location

1.1.11. Households' decision making

In general, Figure 42 shows that there's a high (around 60%) collaboration between male and female heads within the HHs when it comes to making decisions on purchasing of household equipment. Nevertheless, a significant number of respondents (35%) expects female head of the HH to make decision regarding purchasing of cooking devices compared to only 13% when it comes to other purchases such as a solar panel for the house.

Figure 42: Households' decision making

Discrete choice modelling results

Three sets of choices representing different aspects of cooking device design were asked to respondents

• Cooking processes: type of cooking (boiling and frying), power (speed of cooking), use of lid, and number of hobs

• Stove: capacity in terms of number of people it cooks for, capacity in terms of need for supplementary stove, smoke emissions relative to charcoal or wood fire, portability, and durability

• Additional functionality: devices topped up (lights, mobile phone charging, TV), availability in terms of weather impact (sunny and rainy time), financing options, ability to clean.

1.1.12. Cooking processes

Table 4 highlights different variables and their corresponding binary options selected to define cooking processes.

Variable	Op	tions
CPhoil	0	can only boil
Crboli	1	can boil and fry
CPspeed normal	0	slow cooking
	1	normal cooking
	0	slow cooking
CPspeed_fast	0	
	T	Fast cooking
	0	pot with no lid
CPpot_lid	1	pot with lid
	-	
(Phot cooled	0	pot with no lid
CPpot_sealed	1	sealed pot (cannot stir)
CPhob 2	0	1 hob
······	1	2 hobs
	-	
CPhob 4	0	1 hob
_	1	4 hobs
	0	20,000 and below
CPcost	U	
	1	30,000

Table 4: Cooking processes variables and their corresponding options

A logistic regression was carried out to assess the influence of type of cooking, cooking speed, use of lid, number of hobs, and cost of appliance on the choice of the cooking appliance. The overall model was significant when compared to null model (χ^2 (8) =1159.278, p<0.001). The model explained 30.2% of variability in the choice of parameters and correctly predicted 73.4% of the choices.

Results, Table 5, show that cooking processes characteristics that appear to be most important to consumers are:

- Cost: people seem more likely to choose low-cost appliances
- Pots with lid: people seem to prefer cooking on pots which provides them the possibility to use the lid or not whenever they see fit. In fact, this is a practice which is often found in many HHs and goes along well with wet frying which is a popular cooking process in Rwanda. It also enables cooks to prepare dishes when unsure of required cooking time.
- Multiple hobs: people showed preference to appliances with multiple hobs, and in fact, it seemed the more hobs the better. There was more preference for 4 hobs than 2 hobs, although the latter was also preferred to 1 hob.
- Ability to boil and fry: appliances that can both boil and fry were found very important to respondents.
- Fast cooking: people were more likely to choose appliance that can cook fast

Table 5: Binary logistic regression output: cooking processes

								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	CPboil(1)	.970	.098	97.589	1	<.001	2.638	2.176	3.197
	CPspeed_normal(1)	.243	.129	3.540	1	.060	1.275	.990	1.642
	CPspeed_fast(1)	.713	.130	29.890	1	<.001	2.041	1.580	2.635
	CPpot_lid(1)	1.135	.142	64.304	1	<.001	3.112	2.358	4.107
	CPpot_sealed(1)	276	.127	4.697	1	.030	.759	.591	.974
	CPhob_2(1)	.780	.110	50.292	1	<.001	2.181	1.758	2.705
	CPhob_4(1)	1.040	.130	63.829	1	<.001	2.828	2.192	3.650
	CPcost(1)	-1.517	.134	128.208	1	<.001	.219	.169	.285
	Constant	-1.969	.138	203.260	1	<.001	.140		

Variables in the Equation

a. Variable(s) entered on step 1: CPboil, CPspeed_normal, CPspeed_fast, CPpot_lid, CPpot_sealed, CPhob_2, CPhob_4, CPcost.

The willingness to pay, Table 6, which is the maximum amount of money that a customer is willing to pay for a product or service, can be derived from the ratio of the coefficients of each parameter to that of the cost parameter (Hanley, Mourato, & Wright, 2001).

$$WTP = \frac{\beta_x}{\beta_c}$$

Where:

 β_{χ} : coefficient of any parameter

 eta_c : coefficient of cost parameter

Table 6: Willingness to pay for preferred parameters - cooking processes

Parameter	WTP (USD)
Pots with lid	0.73
Multiple hobs (4)	0.67
Boil and fry	0.63
Cooking fast	0.46

1.1.13. Stove features

Table 7 indicates different variables and their corresponding binary options selected to define stove features.

Table 7: Stove features and their corresponding options

Variable	Op	otions
STreonle 7	0	4 people
Stheoble_1	1	7 people
STpeople_10	0	4 people
	1	10 people
	0	always need to use with another stove
STsupplement_sometimes	1	sometimes need to use with another stove
	1	sometimes need to use with another stove
CTauralana ant all	0	always need to use with another stove
Sisupplement_all	1	can do all cooking on it
		-
STemoka charcoal	0	no smoke
STSHICKE_CHarcoal	1	smoke like charcoal
STsmoke wood	0	no smoke
	1	smoke like firewood
	0	
STweight	0	portable
	1	too heavy to move
	0	3 years
STduration	1	5 years
	Т	J years
	0	20,000 and below
STcost	1	30000
	-	

A logistic regression was carried out to assess the influence of number of people an appliance cooks for, its capacity to cook different dishes, its emitted smokes, its portability, its duration, and cost of appliance on the choice of the cooking appliance. The overall model was significant when compared to null model (χ^2 (9) =872.180, p<0.001). The model explained 23.4% of variability in the choice of parameters and correctly predicted 69.0% of the choices.

Results, Table 8, show that stove features characteristics that appear to be most important to consumers are:

- Smoke emissions like wood fire: people expressed the importance of avoiding appliances that emit smokes like the ones from wood fire. However, the analysis wasn't conclusive regarding charcoal emissions.
- Cost: people seem more likely to choose low-cost appliances
- Portable appliances: the ability to move the cooking appliance in and out of the kitchen was also found important to respondents.
- Supplemented by another stove: people expressed that they are happier supplementing their appliance with another stove, which might be a reflection for their existing stacking practices.
- Appliance that lasts long: people seem to prefer appliance that last long, 5 years compared to 3 years in this case study.
- Appliance that cooks for many people: interestingly, results show that respondents prefer appliance that can cook for up to 7 people rather than 4, but regarding the preference to cook for 10 people, the results were not conclusive.

								95% C.I.fo	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	STpeople_7(1)	.346	.112	9.516	1	.002	1.413	1.134	1.761
	STpeople_10(1)	.108	.115	.891	1	.345	1.115	.890	1.396
	STsupplement_sometime (1)	518	.123	17.730	1	<.001	.596	.468	.758
	STsupplement_all(1)	386	.127	9.298	1	.002	.680	.530	.871
	STsmoke_charcoal(1)	.144	.103	1.955	1	.162	1.155	.944	1.415
	STsmoke_wood(1)	-1.309	.107	148.634	1	<.001	.270	.219	.333
	STweight(1)	780	.093	70.730	1	<.001	.459	.382	.550
	STduration(1)	.418	.094	19.767	1	<.001	1.519	1.263	1.826
	STcost(1)	935	.133	49.602	1	<.001	.393	.303	.509
	Constant	.456	.127	12.949	1	<.001	1.578		

Variables in the Equation

Table 8: Binary logistic regression output: stove features

a. Variable(s) entered on step 1: STpeople_7, STpeople_10, STsupplement_sometime, STsupplement_all, STsmoke_charcoal, STsmoke_wood, STweight, STduration, STcost.

Table 9: Willingness to pay for preferred parameters - stove features

Parameter	WTP (USD)
Wood-like smoke	-1.37
Portability	-0.82
Supplementary appliance	-0.54
Duration	0.44
Cook for many people	0.36

1.1.14. Additional functionalities

Table 10 indicates different variables and their corresponding binary options selected to define additional functionalities.

Table 10: Additiond	l functionalities	and their	corresponding	options
---------------------	-------------------	-----------	---------------	---------

Variable	Ор	tions
Enhops led	0	2 hobs
Thilob3_led	1	2 hobs + 3 LED lights
	-	
FNhobs charge	0	2 hobs
	1	2 hobs + charge mobile phone
	0	2 hobs
FNhobs_tv	1	2 hols + TV
	Т	2 11003 + 1 V
FNavailability	0	only works on sunny days
Thavanability	1	works on sunny and rainy days
	0	half unfront and the rost in instalments
FNfinancing_go	1	
	T	pay as you go (monthiy)
ENfinancing cash	0	half upfront and the rest in instalments
FINIMATICINg_Cash	1	pay cash in totality
FNcleaning	0	awkward to clean
	1	easy to clean
	0	15,000 and holow
FNcost	U	15,000 and below
	1	25,000

A logistic regression was carried out to assess the influence of topping up different devices (lights, mobile phone charging, TV) on the appliance, its availability in terms of sunny and rainy days, financing options, its ability to clean, and its appliance cost on the choice of the cooking appliance. The overall model was significant when compared to null model (χ^2 (8) =371.352, p<0.001). The model explained 10.5% of variability in the choice of parameters and correctly predicted 59.8% of the choices.

Results, Table 11, show that additional functionalities characteristics that appear to be most important to consumers are:

- Sunny and rainy days: respondents seem to prefer appliance which aren't affected by the weather, thus can cook any time of the day, whether it's raining or it's sunny.
- Ease to clean: people give importance to appliances that can be cleaned easily
- Financing: people expressed that they would prefer to pay half upfront with the rest being paid in instalments instead of full cash payment or monthly payments in form of Pay As You Go.
- Cost: people were more likely to choose low-cost appliances
- Additional features: people expressed the importance of having a TV in addition to cooking appliances, however, other features such as lights and charge station were not conclusive.

|--|

					•				
								95% C.I.f	or EXP(B)
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1 ^a	Fnhobs_led(1)	.183	.120	2.318	1	.128	1.201	.949	1.521
	FNhobs_charge(1)	.343	.129	7.047	1	.008	1.409	1.094	1.816
	FNhobs_tv(1)	.505	.127	15.856	1	<.001	1.658	1.293	2.126
	FNavailability(1)	1.225	.096	164.160	1	<.001	3.405	2.823	4.107
	FNfinancing_go(1)	716	.111	41.390	1	<.001	.489	.393	.608
	FNfinancing_cash(1)	356	.107	11.100	1	<.001	.701	.568	.864
	FNcleaning(1)	.767	.088	76.444	1	<.001	2.154	1.814	2.559
	FNcost(1)	508	.106	23.053	1	<.001	.602	.489	.741
	Constant	479	.136	12.435	1	<.001	.620		

Variables in the Equation

a. Variable(s) entered on step 1: Fnhobs_led, FNhobs_charge, FNhobs_tv, FNavailability, FNfinancing_go, FNfinancing_cash, FNcleaning, FNcost.

Table 12: Willingness to pay for preferred parameters - Additional functionalities

Parameter	WTP (USD)
Availability	2.36
Cleaning	1.48
Financing	-1.38
Additional TV	0.97

1.1.15. Disaggregating respondents into groups

Respondents and their respective HHs have been expressed into 7 different variables to explore differences in preferences and impact of each group on the choice of appliance characteristics. Those variables were:

- Gender
- Type of settlement
- Type of main cooking fuel
- Household's size
- Age of the respondent
- Domestic status
- Technology proficiency

The analysis investigated the relationship between these variables and the modelling parameters that were selected important (preferred) by respondents: cooking processes (cost of appliance, use of the lid, number of hobs, and type of cooking), stove features (smoke emissions like wood fire, portability, usage of supplementary appliance, cooking for a large number, and duration), additional functionalities (effect of weather and time, ease to clean, financing, and additional feature in terms of a TV). The analysis used a 95% confidence level.

A. Gender

Table 13 suggests that gender had no effect on any of the selected preferred appliance's characteristics, as there was not enough evidence to suggest relationship with any variables (p-value >0.05 for each). This means both female and male users would have the same preferences on these variables.

Table 13: Effect of gender on preferred appliance's characteristics

					Pearson Chi-square				
Variable		Options		Male	Value	df	Asymptotic Significance (2-sided)		
	0	Rwf 20,000 and below	3016	807					
CPcost	0	Rwi 20,000 and below	3010	097	.371a	1	0.542		
	1	KWT 30,000	458	145					
CPhoil	0	can only boil	928	276	0215	1	0.885		
Cr boli	1	can boil and fry	2546	766	.021a	T	0.885		
CDurat lid	0	pot with no lid	1392	414	020-	1	0.045		
CPpot_lid	1	pot with lid	2082	628	.038a	1	0.845		
	0	1 hoh	3004	Q11					
CPhob_4	1	1 hobs	470	121	.636a	1	0.425		
	Т	4 11005	470	151					
STemake wood	0	no smoke	2421	742	8835	1	0 347		
STSHICKE_WOOD	1	smoke like firewood	1053	300	.005a	T	0.547		
	0	portable	2552	759					
STweight	1	too heavy to move	922	283	.157a	1	0.692		
		sometimes need to use							
STsupplement sometimes	0	with another stove	3004	911	6362	1	0 425		
STsupplement_sometimes	1	can do all cooking on it	470	131	.0500	-	0.425		
		6							
STpeople 7	0	4 people	3016	897	.371a	1	0.542		
- · · · · · · · · · · · · · · · · · · ·	1	7 people	458	145		_			
CTduration	0	3 years	2546	766	0210	1	0.995		
STUURATION	1	5 years	928	276	.021a	T	0.885		
		only works on sunny							
	0	days	2653	811	061-	1	0 227		
Finavallability		works on sunny and			.9613	1	0.327		
	1	rainy days	821	231					
ENalessing	0	awkward to clean	934	269	460-	1	0.402		
Fincleaning	1	easy to clean	2540	773	.469a	T	0.493		
		half unfront and the							
	0	rest in instalments	1386	421					
FNtinancing_go	-	pay as you go			.086a	1	0.77		
	1	(monthly)	2088	621					
	0	2 hobs	3010	904					
FNhobs_tv	1	2 hobs + TV	464	138	.009a	1	0.925		
	1	21003 1 1 4	-0 -	100					

a. 0 cells (0%) have expected count less than 5

B. Type of settlement

Table 14 indicates that the HH's location influences the choice of appliance cost ($X^2 = 28.1$, p-value <0.001), number of hobs ($X^2 = 48.1$, p-value <0.001), wood-like smoke emissions ($X^2 = 66.7$, p-value <0.001), portability of the appliance ($X^2 = 11.8$, p-value =0.003), usage of supplementary appliance ($X^2 = 48.13$, p-value <0.001), capacity of the appliance in terms of number of people it cooks for ($X^2 = 28.1$, p-value <0.001), its availability in terms of weather impact ($X^2 = 72.7$, p-value <0.001), and how easy it is to clean it ($X^2 = 35.5$, p-value <0.001). In fact, it seems that rural HHs are less interested in appliance with many hobs, less bothered by wood-like smoke emissions, portability of the appliance, and impact of weather on the appliance as opposed to urban ones. Rural HHs are, however, more interested in low-cost appliances, in using a supplementary appliance, in appliances that can cook for many people and easy to clean in contrast with the urban HHs. For the remaining characteristics (variables), it seems that the HH's location does not have any effect (p-value >0.05 for each).

						Pearson Chi-square				
Variable	Op	tions	Peri urban Rural Urban			Value	df	Asymptotic		
								Significance		
								(2-sided)		
CPcost	0	Rwf 20,000 and below	1300	663	1950	28.069a	2	<.001		
Creose	1	Rwf 30,000	200	153	250					
CPhoil	0	can only boil	400	204	600	1.572a	2	0.456		
	1	can boil and fry	1100	612	1600					
CPpot lid	0	pot with no lid	600	306	900	2.883a	2	0.237		
	1	pot with lid	900	510	1300					
	•		4200		4050	40.400	2			
CPhob 4	0	1 hob	1300	/65	1850	48.136a	2	<.001		
_	1	4 hobs	200	51	350					
	0	no smoke	1050	663	1450	66 758a	2	< 001		
STsmoke_wood	1		1000	152	750	00.7500	2			
	T	Smoke like firewood	450	153	750					
	0	portable	1100	561	1650	11.885a	2	0.003		
Siweight	1	too heavy to move	400	255	550					

Table 14: Effect of settlement type on preferred appliance's characteristics

		sometimes need to use with				19 122	r	< 001
STsupplement_sometimes	0	another stove	1300	765	1850	40.158	Z	<.001
	1	can do all cooking on it	200	51	350			
	0	4 people	1300	663	1950	28.069a	2	<.001
STpeople_7	1	7 people	200	153	250			
STduration	0	3 years	1100	612	1600	1.572a	2	0.456
	1	5 years	400	204	600			
FNavailability	0	only works on sunny days works on sunny and rainy	1150	714	1600	72.699a	2	<.001
	1	days	350	102	600			
FNcleaning	0	awkward to clean	400	153	650	35.497a	2	<.001
	1	easy to clean	1100	663	1550			
	half upfront and the rest in O instalments					6.485a	2	0.039
FNfinancing_go			600	357	850			
	1 pa	ay as you go (monthly)	900	459	1350			
ENhabe to	02	hobs	1300	714	1900	.665a	2	0.717
	12	hobs + TV	200	102	300			

a. 0 cells (0%) have expected count less than 5

C. Household's main cooking fuel

Similar to the HH's location, the type of HH's main cooking fuel, Table 15, seems to influence the choice of appliance cost ($X^2 = 32.8$, p-value <0.001), number of hobs ($X^2 = 56.4$, p-value <0.001), wood-like smoke emissions ($X^2 = 78.2$, p-value <0.001), portability of the appliance ($X^2 = 13.9$, p-value =0.003), usage of supplementary appliance ($X^2 = 56.4$, p-value <0.001), capacity of the appliance in terms of number of people it cooks for ($X^2 = 32.3$, p-value <0.001), its availability in terms of weather impact ($X^2 =$ 85.2, p-value <0.001), and how easy it is to clean it ($X^2 = 41.5$, p-value <0.001). In fact, it seems that firewood and charcoal users are less interested in appliance with many hobs, less bothered by wood-like smoke emissions, portability of the appliance, and impact of weather on the appliance as opposed to LPG users. Firewood and charcoal users are, however, more interested in low-cost appliances, happier to use a supplementary appliance, in appliances that can cook for many people and easy to clean in

contrast with the LPG users. For the remaining characteristics (variables), it seems that the HH's location does not have any effect (p-value >0.05 for each).

The uncanny effect resemblance between HH's location and the type of HH's main cooking fuel is not surprising though, since 80% of firewood users were rural HHs whilst 80% of LPG users were urban HHs (Figure 15).

						Pearson Chi-square			
Variable	Option	IS	Charcoal	Electri city	Firewo od	LPG	Value	df	Asymptotic Significance
									(2-sided)
CRoost	0	Rwf 20,000 and below	1820	39	520	1534	32.88a	3	<.001
Creose	1	Rwf 30,000	318	3	112	170			
CPhail	0	can only boil	560	12	160	472	1.842a	3	0.606
CPboil CPpot_lid CPhob_4	1	can boil and fry	1578	30	472	1232			
CPnot lid	0	pot with no lid	840	18	240	708	3.378a	3	0.337
	1	pot with lid	1298	24	392	996			
CPhob 4	0	1 hob	1896	33	584	1402	56.401a	3	<.001
	1	4 hobs	242	9	48	302			
STsmoke wood	0	no smoke	1565	24	500	1074	78.221a	3	<.001
513110KC_W00U	1	smoke like firewood	573	18	132	630			
STweight	0	portable	1540	33	440	1298	13.926a	3	0.003
STWEIGHT	1	too heavy to move	598	9	192	406			
STrunnlomont o		sometimes need to use				1402	56 402	3	< 001
ometimes	0	with another stove	1896	33	584	1402	50.408	5	<.001
ometimes	1	can do all cooking on it	242	9	48	302			
STneonle 7	0	4 people	1820	39	520	1534	32.889a	3	<.001
s.bcobic_,	1	7 people	318	3	112	170			
STduration	0	3 years	1578	30	472	1232	1.842a	3	0.606

Table 15: Effect of type of household's main cooking fuel on preferred appliance's characteristics

		IMPACT							\bigcirc
	1	5 years	560	12	160	472			
	0	only works on sunny davs	1705	27	540	1192	85.182a	3	<.001
FNavailability	-	works on sunny and							
	1	rainy days	433	15	92	512			
FNcleaning	0	awkward to clean	522	15	128	538	41.593a	3	<.001
5	1	easy to clean	1616	27	504	1166			
	2	half upfront and the rest		45	272	642	7.598a	3	0.055
FNfinancing_go	1	in instalments pay as you go (monthly)	878 1260	15 27	360	1062			
	0	2 hobs	1858	36	552	1468	.780a	3	0.854
	1	2 hobs + TV	280	6	80	236			

a. 0 cells (0%) have expected count less than 5

D. Household's size

Table 16 suggests that the number of people living in the HH had no effect on any of the selected preferred appliance's characteristics (variables), as there was not enough evidence to suggest relationship with any variables (p-value >0.05 for each). This means both HHs with less than 4 people and those with more than that would have the same preferences on these variables.

Table 16:	Effect of	f household's s	size on pret	ferred appl	liance's cha	racteristics
10010 10.		11003011010 3 3	nee on prej	iciica appi	iunice 5 chu	100001100100

					Pearso	-square	
Variable	Opti	ons	5 - above	1 to 4	Value	df	Asymptotic
							Significance
							(2-sided)
CPcost	0	Rwf 20,000 and below	2093	1820	.525a	1	0.469
Creose	1	Rwf 30,000	313	290			
CPhoil	0	can only boil	644	560	.029a	1	0.864
Croon	1	can boil and fry	1762	1550			
CPnot lid	0	pot with no lid	966	840	.054a	1	0.816
	1	pot with lid	1440	1270			

CDbab 4	0	1 hob	2075	1840	.900a	1	0.343
CPHOD_4	1	4 hobs	331	270			
	0	na smalea	1669	1405	1 7 4 9 -	1	0.264
STsmoke_wood	0	no smoke	1008	1495	1.248a	T	0.264
	T	smoke like firewood	/38	612			
STweight	0	portable	1771	1540	.222a	1	0.637
STWEIght	1	too heavy to move	635	570			
		comptimes need to use					
CTaunalament comptimes	0	with another stove	2075	1940	000-2	1	0.343
sisupplement_sometimes	1	with another stove	2075	1840	.900a		
	T	can do all cooking on it	331	270			
CT	0	4 people	2093	1820	.525a	1	0.469
Sipeople_/	1	7 people	313	290			
		-	.=				
STduration	0	3 years	1762	1550	.029a	1	0.864
	1	5 years	644	560			
	0	only works on sunny days	1829	1635	1.359a	1	0.244
FNavailability		works on sunny and rainy					
	1	days	577	475			
	0	and a second based and	652	550	664-	4	0.445
FNcleaning	0	awkward to clean	653	550	.664a	1	0.415
	1	easy to clean	1753	1560			
		half upfront and the rest in				_	
FNfinancing_go	0	instalments	957	850	.121a	1	0.728
	1	pay as you go (monthly)	1449	1260			
					_		
FNhobs_tv	0	2 hobs	2084	1830	.012a	1	0.911
—	1	2 hobs + TV	322	280			

a. 0 cells (0%) have expected count less than 5

E. Age of the respondents

Respondents' age, Table 17, seems to influence the choice of appliance cost ($X^2 = 7.7$, p-value =0.005), number of hobs ($X^2 = 13.3$, p-value <0.001), wood-like smoke emissions ($X^2 = 18.4$, p-value <0.001), usage of supplementary appliance ($X^2 = 13.3$, p-value <0.001), capacity of the appliance in terms of

number of people it cooks for (X² = 7.7, p-value =0.005), its availability in terms of weather impact (X² = 20.1, p-value <0.001), and how easy it is to clean it (X² = 9.8, p-value =0.002). In fact, it seems that respondents more than 30 years old are more interested in low-cost appliances, in appliances that can perform all the cooking, appliance that cook for many people, with many hobs, that is not impacted by weather conditions (works every time), and that are easy to clean, as opposed to the youth. On the other hand, however, 30 years old and above respondents are less bothered by wood-like smoke emissions as opposed to youth (30 years old or less). For the remaining characteristics (variables), it seems that the respondents' age does not have any effect (p-value >0.05 for each).

Table 17: Effect of respondent's age on preferred appliance's characteristics

					Pearson Chi-square			
Variable	Options		30 - above	Youth	Value	df	Asymptotic Significance (2-sided)	
	0	Rwf 20,000 and below	1742	2171	7.757a	1	0.005	
CPcost	1	Rwf 30,000	232	371				
CPhoil	0	can only boil	536	668	.435a	1	0.51	
	1	can boil and fry	1438	1874				
(Prot lid	0	pot with no lid	804	1002	.797a	1	0.372	
crpot_nu	1	pot with lid	1170	1540				
CPhob 4	0	1 hob	1670	2245	13.303a	1	<.001	
CPhob_4	1	4 hobs	304	297				
STamaka wood	0	no smoke	1317	1846	18.449a	1	<.001	
STSHICKE_WOOd	1	smoke like firewood	657	696				
STweight	0	portable	1474	1837	3.285a	1	0.07	
Siweight	1	too heavy to move	500	705				
		sometimes need to use				1	< 001	
STsupplement_sometimes	0	with another stove	1670	2245	13.303a	-		
	1	can do all cooking on it	304	297				
STpeople 7	0	4 people	1742	2171	7.757a	1	0.005	
0.pcop.c_,	1	7 people	232	371				
STduration	0	3 years	1438	1874	.435a	1	0.51	
	1	5 years	536	668				
FNavailability	0	only works on sunny days works on sunny and rainy	1451	2013	20.091a	1	<.001	
	1	days	523	529				

FNcleaning	0 1	awkward to clean easy to clean	572 1402	631 1911	9.810a	1	0.002
FNfinancing_go	0 1	half upfront and the rest in instalments pay as you go (monthly)	768 1206	1039 1503	1.792a	1	0.181
FNhobs_tv	0 1	2 hobs 2 hobs + TV	1706 268	2208 334	.184a	1	0.668

a. 0 cells (0%) have expected count less than 5

E. Domestic status

Table 18 indicates that the domestic status influences the choice of appliance cost ($X^2 = 20.9$, p-value <0.001), number of hobs ($X^2 = 35.9$, p-value <0.001), wood-like smoke emissions ($X^2 = 49.8$, p-value <0.001), portability of the appliance ($X^2 = 8.8$, p-value =0.003), usage of supplementary appliance ($X^2 = 35.9$, p-value <0.001), capacity of the appliance in terms of number of people it cooks for ($X^2 = 20.9$, p-value <0.001), its availability in terms of weather impact ($X^2 = 54.3$, p-value <0.001), how easy it is to clean it ($X^2 = 26.5$, p-value <0.001), and the financing structure ($X^2 = 4.8$, p-value =0.02). In fact, it seems that the unaffluent HHs are interested in low-cost appliance, in appliance with many hobs, in portable appliances, appliance that can do all the cooking, appliance that is not impacted by the weather conditions (can work every time) and would prefer to pay monthly instalments for the appliance in from of PAYG, as opposed to the Better-off. On the other hand, they are less bothered by wood-like smoke emissions, by cleaning difficulty and would do without appliance that cooks for many people, in contrast to better-off HHs. For the remaining characteristics (variables), it seems that the domestic status does not have any effect (p-value >0.05 for each).

	Options			Unaffluent	Pearson Chi-square			
Variable			Better- off		Value	df	Asymptotic Significance (2-sided)	
CPcost	0	Rwf 20,000 and below	1586	2327	20.97a	1	<.001	
	1	Rwf 30,000	304	299				
CPboil	0	can only boil	488	716	1.175a	1	0.278	
	1	can boil and fry	1402	1910				
CPpot_lid	0	pot with no lid	732	1074	2.154a	1	0.142	
	1	pot with lid	1158	1552				

Table 18: Effect of domestic status on preferred appliance's characteristics

CPhob_4	0 1	1 hob 4 hobs	1706 184	2209 417	35.96a	1	<.001
STsmoke_wood	0 1	no smoke smoke like firewood	1431 459	1732 894	49.87a	1	<.001
STweight	0 1	portable too heavy to move	1342 548	1969 657	8.879a	1	0.003
STsupplement_sometimes	0 1	sometimes need to use with another stove can do all cooking on it	1706 184	2209 417	35.96a	1	<.001
STpeople_7	0 1	4 people 7 people	1586 304	2327 299	20.970a	1	<.001
STduration	0 1	3 years 5 years	1402 488	1910 716	1.175a	1	0.278
FNavailability	0 1	only works on sunny days works on sunny and rainy days	1553 337	1911 715	54.31a	1	<.001
FNcleaning	0 1	awkward to clean easy to clean	428 1462	775 1851	26.52a	1	<.001
FNfinancing_go	0 1	half upfront and the rest in instalments pay as you go (monthly)	792 1098	1015 1611	4.845a	1	0.028
FNhobs_tv	0 1	2 hobs 2 hobs + TV	1646 244	2268 358	.497a	1	0.481

a. 0 cells (0%) have expected count less than 5

F. Technology proficiency

Table 19 suggests that the technology proficiency had no effect on any of the selected preferred appliance's characteristics, as there was not enough evidence to suggest relationship with any variables (p-value >0.05 for each). This means both proficient and non-proficient users would have the same preferences on these variables.

					Pearson Chi-square			
Variable	Options		Experienced users	Novice	Value	df	Asymptotic Significance (2- sided)	
	0	Rwf 20,000 and below	2678	1235	.048a	1	0.827	
CPcost	1	Rwf 30,000	410	193				
CPboil	0	can only boil	824	380	.435a	1	0.959	
	1	can boil and fry	2264	1048	11004			
CPpot_lid	0	pot with no lid	1236	570	.005a	1	0.944	
	1	pot with lid	1852	858				
CPhob_4	0	1 hob	2674	1242	.082a	1	0.774	
	1	4 hobs	414	187				
STsmoke_wood	0	no smoke	2158	1005	.114a	1	0.736	
	1	smoke like firewood	930	423				
STweight	0	portable	2266	1045	.02a	1	0.887	
-	1	too heavy to move	822	383				
STsupplement_sometimes	0	sometimes need to use with another stove	2674	1741	082a	1	0.774	
	1	can do all cooking on it	414	187	.0024			
STpeople_7	0	4 people	2678	1235	.048a	1	0.827	
	1	7 people	410	193				
STduration	0	3 years	2264	1048	.003a	1	0.959	
	1	5 years	824	380				
FNavailability		only works on sunny			_		0.725	
	0	days works on sunny and	2364	1100	.124a	1		
	1	rainy days	724	328				
FNcleaning	0	awkward to clean	826	377	.061a	1	0.806	
	1	easy to clean	2262	1051				
FNfinancing_go		half upfront and the rest	4224	530		1	0.916	
	0	in instalments	1234	573	.011a	-		
	1	pay as you go (monthly)	1854	855				
FNhobs_tv	0	2 hobs	2676	1238	.001a	1	0.973	
	1	2 hobs + TV	412	190				

Table 19: Effect of technology proficiency on preferred appliance's characteristics

a. 0 cells (0%) have expected count less than 5

4. Conclusion

Although eCooking was found merely existent as a main cooking fuel, the DCM study has highlighted several potential opportunities for eCookers manufacturers and suppliers for the Rwandan market. Preference choices of appliances' characteristics showed that eCookers, EPC particularly, could well fit with the Rwandan cookstove's requirements, in terms of the possibility to use the lid or not whenever they see fit, ability to both boil and fry, to avoiding wood-like smoke's emissions, the ability to move the cooking appliance in and out of the kitchen, the ability to do all the cooking activities, the capacity to cook for many people, to be able to last long, weather-independence, and ease to clean. The study showed also that eCookers' suppliers would need to put in place interesting financing mechanisms if they are to win over the market. However, there's need to resolve the issue of multiple hobs for EPCs. Furthermore, the study showed that a special attention is needed when designing marketing strategies, as there is a distinct importance on various appliances' characteristics depending on settlement location, domestic status, or age of customers. Rural and urban HHs do not necessarily prefer appliances with similar characteristics nor youth and much older customers.

Non-frequent power outages highlighted in this report provide another potential opportunity for eCooking development. In fact, A/C eCooking is a reliable option for grid connected HHs. Further analysis should, however, be conducted for each concerned mini grid to gather data on electricity reliability. Urban HHs generally cooked 3 meals a day with the third coinciding with the utility and mini grid peak consumption. Special cooking tariff by the utility should be explored for future eCooking development.

Respondents reported their existing cooking fuel (LPG, charcoal, and firewood) expensive, which could provide a room for eCooking introduction. In fact, looking at the cooking diary results, eCooking would be cost competitive as it was reported the cheapest fuel to cook a meal for one person compared to charcoal and LPG. In addition, respondents were convinced that many people would change their cooking fuel to eCooking should their price be in the same range. This claim was supported by the fact that people were aware of the health problems associated with smokes' emissions as well as the burden associated with wood collection.

Generally, whether from urban or rural HHs, people seemed familiar with mobile telephone-based technology, which could be a serious option to explore when designing innovative financing mechanisms for eCookers.

5. References

BRD. (2021, March 02). Priority sectors- Energy. Retrieved from Development Bank of Rwanda:

https://www.brd.rw/brd/energy-investments/

BRD. (2021b). *Component 3b Increasing Access to Clean Cooking Solutions Operations Manual.* Kigali: Development Bank of Rwanda.

Christie, R. (2012). *IEEE Standard 1366 – Classifying Reliability (SAIDI, SAIFI, CAIDI) into Normal, Major Event and Catastrophic Days.* University of Washington.

De Bekker-Grob, E., M., R., & K., G. (2012). Discrete choice experiments in health economics: a review of the literature. *Health Econ.*, 145-72.

FinScope. (2020). Financial inclusion. Kigali: Access to Finance Rwanda.

GoR. (2012). Urbanization and Rural Settlement Sector Strategic Plan. Kigali.

GoR. (2018). Urbanization and Rural Settlement Sector Strategic Plan. Kigali.

GoR. (2020). Updated Nationally Determined Contributions. Kigali.

Hanley, N., Mourato, S., & Wright, R. (2001). Choice Modelling Approaches: A Superior Alternative for Environmental Valuatioin? *Journal of Economic Surveys*, 435-462.

IHME. (2021, 03 09). *IHME/ country profile/ Rwanda*. Retrieved from Institute for Health Metrics and Evaluation: http://www.healthdata.org/rwanda

KPLC. (2021, 05 24). *Electricity tariff*. Retrieved from Kenya Power:

https://www.kplc.co.ke/category/view/77/electricity-tariffs

KPLC. (2021, 06 11). Reliability Indices. Retrieved from Kenya Power: https://kplc.co.ke/search/content

Krejci, C. (2021, 08 05). Relationship Between Indoor Cooking and Health. Retrieved from Borgen

magazine: https://www.borgenmagazine.com/relationship-indoor-cooking-and-health/

Leary, J., Scott, N., Numi, A., Chepkurui, K., Hanlin, R., Chepkemoi, M., & Batchelor, S. (2019). *eCook Kenya cooking diaries*. MECS.

MININFRA . (2016). Rural Electrification Strategy. Kigali city: MININFRA.

MININFRA. (2015b). National Urbanisation Policy. Kigali.

MININFRA. (2017). Energy Sector Strategic Plan. Kigali: Ministry of Infrastracture.

MININFRA. (2019). Biomass energy strategy: a sustainable path to clean cooking. Kigali.

MINIRENA. (2017). Rwanda National Land Use Planning Guidelines. Kigali.

NISR. (2018). EICV5: Rwanda Poverty Profile Report. Kigali: National Institute of Statistics of Rwanda.

NISR. (2021, 02 03). *Key figures*. Retrieved from National Institute of Statistics of Rwanda: https://www.statistics.gov.rw/

Ntivunwa, S. (2022). Cooking Diary Rwanda: working paper. MECS.

Pia Nilsson, M. B. (2019). One cow per poor family: effects on consumption and. *World Development, Volume 114*, 1-12.

REG. (2019 a). *The National Electrification Plan: Report on definition of technologies (On-grid and off-grid) at village level*". Kigali: Rwanda Energy Group.

REG. (2019 b). Rwanda Energy Group Strategic Plan, 2019-2024. Kigali: Rwanda Energy Group.

REG. (2021, 02 04). *Biomass*. Retrieved from Rwanda Energy Group: http://www.reg.rw/what-we-do/biomass/

REG. (2021, 06 11). *Circuit breaker report tripping*. Retrieved from Rwanda Energy Group:

https://www.reg.rw/fileadmin/user_upload/Network_Perfomance_Indices_SAIDI_SAIFI_Kigali_2020.pdf REG. (2021, 06 11). *News details*. Retrieved from Rwanda Energy Group: https://www.reg.rw/mediacenter/news-details/news/ongoing-reforms-in-electricity-services-to-ease-doing-business-in-rwanda/ REG. (2021, 05 24). *Tariffs*. Retrieved from Rwanda Energy Group: https://www.reg.rw/customerservice/tariffs/

RHA. (2021, 08 10). *Rural Settlement Planning & Development*. Retrieved from Rwanda Housing Authority: https://www.rha.gov.rw/index.php?id=40

Scott, N., Batchelor, S., & Jones, T. (2019). *Introduction to Discrete Choice Modelling and MECS*. Gamos. Ssemakalu, S., Edimu, M., & Serugunda, J. K. (2018). Network Reliability Analysis as a Tool to Guide Investment Decisions in Distributed Generation. *Journal of Power and Energy Engineering, 6*, 64-84. Statista. (2021, 02 03). *Rwanda: Gross domestic product (GDP) per capita in current prices from 1985 to 2025*. Retrieved from Statista: https://www.statista.com/statistics/452130/gross-domestic-product-gdpper-capita-in-rwanda/

Tanesco. (2021, 05 24). *BEI ZA UMEME ZILIZOIDHINISHWA*. Retrieved from Tanzania Electric Supply Company Limited: http://www.tanesco.co.tz/index.php/customer-service/tariffs/7-bei-za-umemezilizoidhinishwa

UEDCL. (2021, 05 24). *Approved Tariff*. Retrieved from Uganda Electricity Distribution Company Limited: https://www.uedcl.co.ug/approved-tariffs/

United Nations. (2015). *Transforming our world: the 2030 Agenda for Sustainable*. The United Nations. Winrock International. (2017). *Clean and efficient cooking technologies and fuels.* USAID. World Bank. (2017). *Doing Business, equal opportunity for all.* Washington.

World Bank. (2018). *Rwanda: Energy Access Diagnostic Results Based on Multi-Tier Framework*.
Washington DC: World Bank.
World Bank. (2020). *RISE 2020: Sustaining the momentum*. The World Bank.
World Bank. (2020). *Rwanda - Energy Access and Quality Improvement Project*.
World Bank and IHME. (2016). *The Cost of Air Pollution: Strengthening the Economic Case for Action*.
Washington, DC: World Bank.