

Current Situation: Electricity Access, Clean Cooking

- In 2022, 61% had access to electricity¹.
- In 2022, 17% cooked with commercialized polluting cooking fuels (charcoal); and 93% cooked with polluting cooking fuels (charcoal and wood)².

Right: Primary cooking fuel use, Rwanda Market Assessment, data from 2020.

Potential for eCooking

- 50% of people are connected to electricity and not cooking with it urban centres can be easily targeted. More than 90% of households in urban areas are electrified and more than 65% use charcoal to cook³.
- Cooking with electricity on Regular 1 tariff is as expensive or cheaper in urban areas than cooking with biomass, and it is safer and more convenient.

¹ NISR, 5th Population and Housing Census in Rwanda, 2022
 ² NISR, 5th Population and Housing Census in Rwanda, 2022
 ³ MECS, Rwanda eCooking Market Assessment, 2022

Cost of cooking over a month, using international averages for cooking energy demand from ESMAP (2020)⁴ and local electricity/fuel prices from price surveys conducted in 2021/2022, and including cost of appliance levelized over stove lifetime.

- It is cheaper to cook with Electric Pressure Cookers (EPCs): 70% cheaper to cook beans on an EPC compared to charcoal, 50% cheaper compared to LPG⁵.
- 90% of the menu can be cooked on EPCs⁶.
- There is an expansion in electricity generation coming on board 193 MW in 4 years⁷ will create a generation surplus, and demand stimulation is a government priority.
- The Delagua Tubeho Neza project has given away 600,000 free Improved Cookstoves (ICS) and may repeat with a further 600,000. However, this activity can distort the commercial cookstove market and the utilisation of units may not be fully effective and efficient.

MECS programme activity

- Pilot projects run by Energy 4 Impact supported by MECS in February 2022.
- Electrocook, supported by EEP Africa and the Nordic Fund, was set up in 2020 with the mission to distribute 5000 Electric Pressure Cookers (EPCs). They are partnering with ARC Power to run a pilot with 50 households connected to one of ARC Power's mini-grids in Nyamata, Bugesera district. Electrocook's vision is to assemble EPCs in Rwanda in its quest to address supply chain issues and provide employment.

This material has been funded by UKAid from the UK government; however the views expressed do not necessarily reflect the UK government's official policies.

⁴ Energy Sector Management Assistance Program. 2020. Cooking with Electricity: A Cost Perspective. World Bank, Washington, DC. © World Bank, License: CC BY 3.0 IGO.
⁵ MECS, Cooking with electricity: Rwanda case study, 2023 [Unpublished]
⁶ MECS, Cooking with electricity: Rwanda case study, 2023 [Unpublished]
⁷ REG, Least Cost Development Plan 2022-2040, 2022

Rwanda: Socio-economic and environmental costs and benefits

Using the World Health Organisation's (WHO's) revised "<u>Benefits of Action to Reduce Household Air Pollution</u>" (BAR-HAP) tool, we **quantify the expected economic, social and environmental benefits of a simple scenario of uptake at scale of electric cooking for Rwanda**. The scenario represents a programme of eCook stove investment, with the capital costs paid by the programme (donor, investor or government funded) and housholds making savings in fuel costs and avoidance of buying replacement traditional stoves. In addition, the wider set of economic, social and environmental impacts can be calculated, and the sum of all costs and benefits, which is the overall 'social net-benefit' of this transition for Rwanda.

Scenario modelled: <u>all households connected to the grid in Rwanda in 2020 but using charcoal as their primary cooking</u> <u>fuel transition to using an EPC by 2030</u>.

The overall result is a very large economic benefit of the eCooking transition, with benefits shared between households and the wider society or country.

Details of the scenario assumptions and discussion of results are in the MECS <u>Rwanda eCook market assessment</u>. (Note some results are a little different here, due to changes in assumption since the market assessment).

Table. (A) households transitioning in the scenario; (B) Net social benefit of the transition per year; (C) financial costs of equipment, fuel and programme admin; (D) social and environmental benefits (in both physical units and then monetised)

			-
(A) Grid connections projections and eCock torget		Housholds	
(A) Shu connections projections and ecook target	Population (million)	(million)	
National population, 2020	12.63	2.96	
Grid connections, 2020	4.50	1.06	
Of which, using charcoal as main fuel	2.93	0.69	
Transition from charcoal to eCooking	1.17	0.27	
			Monetised Costs
(costs are -ve, benefits are +ve)			& benefits, \$/yr
(B) Total present value (ie net social benefits of the tr	ansition)		41,938,131
(C) Total costs of transition, programme + household			12,419,151
Private cost to housholds: total			15,983,066
Stove			108,630
Fuel			16,269,643
Maintenance			-395,207
Costs to programme: total			-3,563,915
Stove			-2,715,751
Fuel			0
Admin			-848,164
		Physical:	
(D) Health, Time, and Environmental Benefits: total		change/yr	29,518,980
Health impacts total: DALYs avoided	Disability-adjusted Life Years (DALYS)	669	3,817,434
Mortality reduction	Years of life lost (YLL)	397	3,039,651
Mortality reduction	Lives	34	
Morbidity reduction	Years of healthy life lost (YLD)	272	777,783
Morbidity reduction	Cases	1,344	
Time savings in cooking	Hours	85,955,986	17,686,185
Time savings per adopting household	Hours/HH	318	
Electricity use, additional	MWh	189,194	
CO2-eq reduction (CO2,CH4,N2O)	Tonnes	433,465	6,618,431
Unsustainable wood harvest reduction	Tonnes	168,618	1,396,930

Figure. Monetized costs and benefits from the table, and how these stack to a net social outcome over ten years.

Table. Explanation of the physical impacts and their monetisation

Costs and Benefits	Physical effects	Monetisation of benefits
Morbidity (ill-	Morbidity reductions of: chronic obstructive	The 'Value of statistical life' puts a monetary benefit
health) reduction	pulmonary disease (COPD); acute lower	to a year of life. Time lags are added to account for
	respiratory infections (ALRI); ischemic heart	the time to develop illness, and a social discount rate
	disease (IHD); lung cancer (LC); stroke (x)	is applied so the present value of these future health
		benefits are discounted. "Spillover" health benefits
		are also added, reflecting the improvements in
		outdoor air quality
Mortality	Mortality reductions of: COPD, ALRI, IHD, LC,	Multiplied by value of statistical life, and adding time
reductions	x	lags and adding spillover benefits, as for morbidity
Time savings	Change in time spent cooking	Valued at a fraction of the unskilled market wage, to
		reflect the lower opportunity cost for time spent
		cooking relative to work time
Climate mitigation	Change in Kyoto protocol greenhouse gases	Valued using a social cost of carbon
	(i.e. CO2, CH4 and N2O) plus three additional	
	pollutants (BC, OC and CO)	
Ecosystem benefits	Change in unsustainably harvested firewood	Cost of timber farming multiplied by change in
		renewably harvested biomass
Household fuel	Electricity use and traditional fuel displaced	Fuel and electricity prices
Household stove	Avoided traditional stove replacements	Cost of traditional stove which is saved
Programme admin	Programme planning & implementation effort	Using local wage rates
Stove subsidy	eCook equipment required	Price of eCook stove
Maintenance &	eCook appliance maintenance + time for	Maintenance costed using local wage rates; learning
learning	householders to learn eCooking	time costed using a fraction of the unskilled market
		wage

