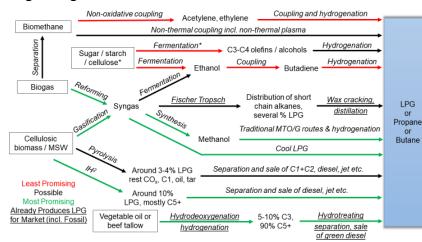


Emerging fuel options for clean cooking

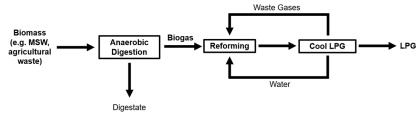
Helen Osiolo, Loughborough Matthew Leach, Gamos 13th June 2023



Sources of energy

Fossil LPG production mainly a by-product of primary oil and gas production or of oil refining

BioLPG is produced by chemical conversion of 'feed gas' originating from renewable resources



MECS involvement

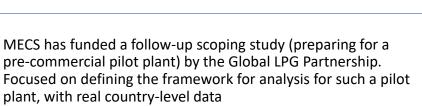
MECS funded an initial desktop feasibility study by the Global LPG Partnership: Assessing Potential for BioLPG Production and Use within the Cooking Energy Sector in Africa. GLPGP, September 2020. https://mecs.org.uk/wp-content/uploads/2020/09/GLPGP-Potential-for-BioLPG-Production-and-Use-as-Clean-Cooking-Energy-in-Africa-2020.pdf

Looked at agri-residues and MSW, for Kenya, Ghana & Rwanda, using GTI Energy's patented 'CoolLPG' process

Concluded could be good financial investment case, but depends on feedstocks and local conditions

Conversions for cooking

LPG comprises any mix of propane and butane; bioLPG is molecularly identical to fossil LPG


Store bioLPG at moderate pressure, when it liquefies

ati

Use large or small cylinders: identical cylinders as for normal (fossil) LPG

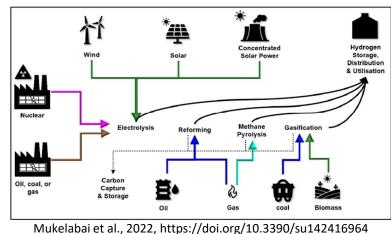
Valve expands it to a gas for combustion in a burner for cooking

Can use a flow meter on valve to measure use

Involves:

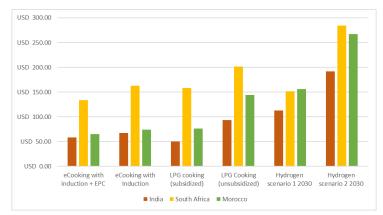
- On-the-ground data gathering on urban MSW feedstocks in Kenya, Rwanda and Cameroon
- · Research into the 'enabling environment' in each country
- Defining sustainability and financial questions to be answered

Opportunities & Challenges


- LPG is an easy-to implement, economically efficient route to rapid scale-up of access to affordable, clean cooking energy
- BioLPG can be dropped into existing LPG distribution and consumer infrastructure and fits immediately into proven policy, regulatory, safety and market best practices
- Climate: LPG derived from fossil fuels
 has significant climate impact
 - A bio-version would avoid that
 - If feedstocks are sustainably grown biomass, or wastes without other uses, then regard GHG emissions as net-zero
- As for fossil LPG: cleaner burning than solid biomass, but emits nitrogen dioxide, carbon monoxide, and formaldehyde
 - Moves away from gas for cooking in many rich economies, both for climate and for health
- Feedstocks: challenge to find high enough geographic concentrations for cost effective collection, as at present the chemical engineering for conversion works better at large scale
 - Urban MSW looks promising
 - Rural agri-residues more difficult
- Waste management is another major problem: 'energy from waste' helps

S σ J etroleum (Liquefied J ٥. BioL

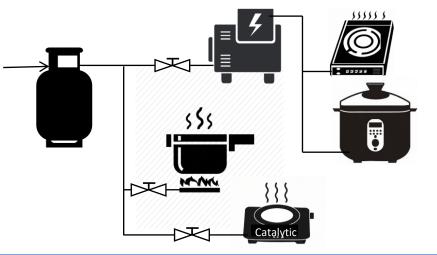
Sources of energy


The primary energy source defines environmental credentials; colour used to name, eg Renewables => 'Green Hydrogen' (but all chemically identical)

Energy sources can be large scale or distributed: eg solar PV at grid, minigrid or household scale

MECS involvement

Commissioned consultancy: "Review study on the Hydrogen Transition and Cooking", Matthias Galan, March 2023. https://mecs.org.uk/wp-content/uploads/2023/03/Report-green-hydrogen-Matthias-Galan-clean-to-publish MG.pdf



Annual cost of cooking (USD/year). H_2 : direct combustion of green hydrogen, lower and higher cost assumptions

Conversions for cooking

Store H₂ in large or small cylinders

Cook with it as gas (combustion or catalytic heater) or use to generate electracy (and 'waste' heat)

Sources & links

Hydrogen for Cooking? A Review of Cooking Technologies, Renewable Hydrogen Systems and Techno-economics

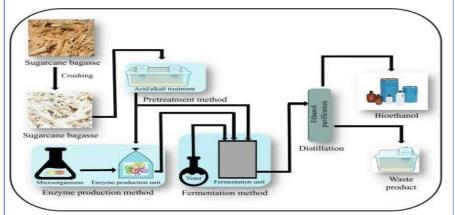
Mukelabai, Mulako, Upul Wijayantha, and Richard Blanchard. 2022. Loughborough University. <u>https://hdl.handle.net/2134/21746921.v1</u>

Environmental sustainability of renewable hydrogen in comparison with conventional cooking fuels.

Ximena C. Schmidt Rivera, Evangelia Topriska, Maria Kolokotroni, Adisa Azapagic. Journal of Cleaner Production 196 (2018) 863-879. https://doi.org/10.1016/j.jclepro.2018.06.033

Geopolitics of the Energy Transformation: The Hydrogen Factor. IRENA: Abu Dhabi, United Arab Emirates, 2022. www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen

Hydrogen. IEA: Paris, France, 2021. www.iea.org/reports/hydrogen


Opportunities & Challenges

- Means to store & transport energy from renewables
 - Adds cost: additional kit for conversions; efficiency losses in conversions; H₂ leakage
 - Electolyser is key component for renewable electricity->green hydrogen. Electricity splits water into H₂ and O₂. O₂ can also be useful.
- H2 can be used for many different energy end-uses
- Whole production system can be localized, or central production + H₂ distribution for local use
- Climate impact: no CO₂ at point of use (but H₂ leakage has some climate effect)
 - can be emissions in production, so use low/zero carbon routes
- Burns quite cleanly: forms Nitrogen Oxides (air pollutant and precursor for particulates and ozone)
 - Minimise emissions through catalytic burner or electricity generation in a fuel cell
- Will need bespoke kit (burners, storage etc), and needs care about safety, so costly at start
- Lot of activity for hydrogen in many sectors, so innovation and scale-effects will drive down costs

Sources of energy

Bioethanol is alcohol based in nature, produced by fermentation of sugars & starch from crop wastes/residues or energy crops.

Energy crops include; sugarcane, cassava, potatoes, water hyacinth, grains (wheat, rye, barley, soybeans, maize) and wood.

Tyagi et al., 2019: https://www.sciencedirect.com/science/article/abs/pii/B978012815407600002

MECS involvement

 Ongoing literature review on bioethanol for cooking – Contribution to the : Special Issue "Energy Transition and Sustainability in Emerging Economies: Clean Energy and Net Zero Emission :

https://www.mdpi.com/journal/energies/special_issues/LY2 6JA5Q03

• Bioethanol for cooking can be scaled up by addressing several barriers, categorised under 3 dimensions of MECS transition theory of change (TToC) as follows:

Conversions for cooking

Bioethanol is sold using canisters of different volumes to address affordability.

The burner(s) producers a clean blue flame and has a regulator to control the size of the flames.

Sources & links

Production of Bioethanol From Sugarcane Bagasse: Current Approaches and Perspectives, Swati Tyagi, Kui-Jae Lee, Sikandar I. Mulla, Neelam Garg, Jong-Chan Chae, 2019.

https://www.sciencedirect.com/science/article/abs/pii/B978012815407600 0022

Unlocking the bioethanol economy: A pathway to inclusive and sustainable industrial development in developing countries. United Nations Industrial Development Organization. UNIDO, 2022. https://www.unido.org/sites/default/files/files/2022-08/UNIDO_Ethanol_Summary_Report_screen.pdf

Consumer demand – related barriers include poverty/affordability, awareness, finance, reliability of fuel supply, consumer preferences and safety.

Supply Chains - performance of stove technology, startup/business finance required to acquire cook stove technology, support from comprehensive commercial approach.

Enabling environment – lack of policy support due to unawareness of economic, social and environmental benefits of bioethanol & Inappropriate ear marked government taxes.

Opportunities & Challenges

- Bioethanol for cooking supports 13 out of 17 SDGs (i.e., SDGs Nos; 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, & 15).
- The absence of rigorous analysis of the benefits, historical barriers to scalability, currently limits the understanding of the potential contribution of bioethanol fuels and stove technologies for cooking.
- Burns cleaner with lower GHG emissions and has high energy content when burnt.
- At production level, its considered carbon neutral (same amount of carbon released is absorbed during photosynthesis).
- Bioethanol is renewable energy: its energy is primarily conversion of the sun's energy into usable energy.
- On going debates: food vs fuel, biodiversity, and carbon neutrality.
- Food vs fuel debate: when crop residues/wastes are used as source of energy without other current uses, the debate does not hold.
- Biodiversity debate: requirements for large arable land to grow crops destroying natural habitats & rainforests, the debate does not hold when crop residues are used.
- Carbon neutrality debate: the debate on neutrality of bioethanol in reference to land use of an area may not hold but might be a debate on concerns of bioethanol transportation and the burning of the crop residues.