

Making a 10-year-lifetime solar eCooking battery for rural Africa

Customizing lithium titanate (LTO) for low-income households

> Robert Van Buskirk, Ph.D. & Skyler Selvin <u>https://solar4africa.org</u>

Background: Some Basic Parameters for Off-grid Solar eCooking in Malawi

- Households in Malawi cook an average of 5 dishes per day:
 - (a) Two *nsima/ugali*,
 - (b) A root starch (i.e. potatoes or cassava),
 - (c) A vegetable (i.e. greens), and
 - (d) A protein (fish, soy, beans, or meat)
- Cooking energy intensity is 150 to 350 watt-hours per kg of cooked food
- People eat ~2000 calories/day
- On average cooked food has a caloric content of about 1 calorie per gram or 1000 calories per kilogram
- People in rural Malawi eat about 2 kg of food per day.
- The cooking energy requirement for a household of 5 is about 2.5 kWh/day
- A 700 watt-peak battery-free off-grid solar eCooking system provides about 1 kWh of cooking energy per day.

Off-grid Solar eCooking can be started with an Inexpensive Battery-free System

2 x \$50 = \$100 Bulk Procurement Cost **Two 72-Cell Solar Panels**

Maximum Power Point Tracking (MPPT) 600W Controller

\$30 Bulk Procurement Cost

Battery-free System Procurement Cost is \$160

DC Insulated Electric Pressure Cooker

\$30 Bulk Procurement Cost

An Off-grid Solar Electric Cooking System (OGSECS) operates better when a battery added

How much does the battery cycle? Statistics of System Energy Use vs. Dishes Cooked

Key conclusions:

- 2 to 3 dishes are cooked per day for a 1 kWh/day system
- There is one battery cycle per dish cooked for a small, affordable battery
- Total energy use is typically ~0.5 kWh per dish
- A larger solar panel will lead to more dishes cooked per day and more frequent battery cycling

LTO has Lowest per-kWh Battery Cost when the battery cycles multiple times per day

Battery Cost per kWh = [AnnualizedBatteryCost]/[kWhPerYear]

AnnualizedBatteryCost = BatteryInvestment x CapitalRecoveryFactor (CRF)

$$CRF = \frac{i(1+i)^n}{(1+i)^n - 1}$$

Chemistry	Retail Price/Wh	Cycle Life	Cycles/year	Lifetime (n)	Interest Rate (i)	CRF	\$/kWh
Lead-Acid	\$0.20	500	913	0.55	4%	1.88	\$0.41
LiFePO4	\$0.40	3000	913	3.29	4%	0.33	\$0.14
LTO	\$0.80	10000	913	10.96	4%	0.11	\$0.10

Comparing the Cost of LTO and LiFePO4 at the Factory Door

Key observations:

- LiFePO4 battery cell factory door prices cells are about 40% less than LTO
- This is about \$0.08/Wh.
- But the cost of the better LTO battery chemistry is small compared to the other costs of providing a battery
- It is easily worth it to have an LTO battery that can last 10 years rather than LiFePO4 which will last <5 years

How to Make an LTO Battery for a Solar Home Cooking System

Intro to Lithium-Ion Batteries

Discharging LFP Battery

Negative Anode Electrolyte Positive Cathode

Anode Reaction:

 $\mathrm{LiC}_6 \rightarrow \mathrm{C}_6 + \mathrm{Li^+} + e^-$

Cathode Reaction: FePO₄ + Li⁺ + $e^- \rightarrow$ LiFePO₄

Don't care about this

Cathode Material Options:

- LCO (Lithium Cobalt)
- LMO (Lithium Manganese)
- NMC (Lithium Nickel manganese cobalt)
- LFP (Lithium Iron Phosphate)
- NCA (Lithium Nickel Cobalt Aluminum)

Anode Materials Options:

- Carbon (Graphite)
- LTO (Lithium Titanate) = Li₄Ti₅O₁₂

Need to address this

Cons of LTO:

- LTO batteries will be more expensive because graphite is basically free
- LTO batteries take up more space because lower cell voltage

Pros of LTO:

- Lasts more cycles because
 LTO deforms less during
 charging/discharging
- Higher power capacity because of rapid Li-Ion kinetics

ה ה

Making and Protecting a Battery

Physical Protection

Outer case & Encapsulation

- ✓ Water induced corrosion
- ✓ Shock

Electrical Protection

Battery Management System

- ✓ Over-charge
- ✓ Under-voltage
- ✓ Cell balancing
- ✓ Over temperature
- ✓ Short circuit

Thermal Protection

Heat sinks

Thermally conductive encapsulant

Assembly

BMS and cells are done by machine

Assembly is mostly done by hand

 \checkmark

 \checkmark

 \checkmark

 \checkmark

 \checkmark

Electrical Protection: (BMS)

Minimizing Cost of the Battery

Minimizing Cost: No Solar Controller

Our custom BMS

Our Product: 12V and 18V versions

12V Version:

Max data recording frequency: >10 rec/sec Recorded data: cell voltages, temperature, charge and load current

Current accuracy: ±0.1A Voltage accuracy: ±0.05V Max charge: 40V, 30A Max load: 30A Electronic fuse: 1ms at 60A, 100ms at 30A Operating temperature: -40°C to +85°C Life expectancy: 10,000 full cycles Output voltage: 10V - 13.5V Capacity: 110Wh / 10Ah`

Battery Assembly Costs

5-Cell, 12V Battery	Cost/Unit			Units per Battery		Average Cost	
Cost Component	Unit	Low	High	Low	High	per Battery	
Pouch Cell at Factory Door	Cells	\$3.28	\$4.00	5	5	\$18.20	
Shipping of Battery Cells	kg	\$3	\$5	1.65	2	\$7.48	
Import Taxes		15%	25%	\$3.20	\$7.50	\$5.35	
BMS Electronics	Set	\$10	\$20	1	1	\$15.00	
Ероху	kg	\$5	\$10	0.7	1.2	\$7.75	
Assembly Labor	Days	\$5	\$10	1	2	\$12.50	
Losses and Breakage		10%	20%	\$4.31	\$17.90	\$11.10	
Total Cost	\$47.36	\$107.40	\$77.38				

- Encapsulation: \$7.75
- Assembly Labor: \$12.5
- Losses & Breakage: \$11.1

Next Steps/Ambitions

- Production run of 500 to 1000 batteries in Malawi
- Demonstration of applying the battery to administer per-kWh eCooking access subsidies
- Development of a capacity to export batteries from Malawi
- Create partnerships with other countries to replicate battery production outside of Malawi

Contact: info@solar4africa.org

Acknowledgements

Workers & Volunteers of Kachione LLC, Solar Ku Midzi,& Solar4Africa..org

Women's Groups operating village solar shops

https://www.omprakash.org/global/solar4africa/donate